Step |
Hyp |
Ref |
Expression |
0 |
|
ccop |
|- ContOp |
1 |
|
vt |
|- t |
2 |
|
chba |
|- ~H |
3 |
|
cmap |
|- ^m |
4 |
2 2 3
|
co |
|- ( ~H ^m ~H ) |
5 |
|
vx |
|- x |
6 |
|
vy |
|- y |
7 |
|
crp |
|- RR+ |
8 |
|
vz |
|- z |
9 |
|
vw |
|- w |
10 |
|
cno |
|- normh |
11 |
9
|
cv |
|- w |
12 |
|
cmv |
|- -h |
13 |
5
|
cv |
|- x |
14 |
11 13 12
|
co |
|- ( w -h x ) |
15 |
14 10
|
cfv |
|- ( normh ` ( w -h x ) ) |
16 |
|
clt |
|- < |
17 |
8
|
cv |
|- z |
18 |
15 17 16
|
wbr |
|- ( normh ` ( w -h x ) ) < z |
19 |
1
|
cv |
|- t |
20 |
11 19
|
cfv |
|- ( t ` w ) |
21 |
13 19
|
cfv |
|- ( t ` x ) |
22 |
20 21 12
|
co |
|- ( ( t ` w ) -h ( t ` x ) ) |
23 |
22 10
|
cfv |
|- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) |
24 |
6
|
cv |
|- y |
25 |
23 24 16
|
wbr |
|- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y |
26 |
18 25
|
wi |
|- ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
27 |
26 9 2
|
wral |
|- A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
28 |
27 8 7
|
wrex |
|- E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
29 |
28 6 7
|
wral |
|- A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
30 |
29 5 2
|
wral |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
31 |
30 1 4
|
crab |
|- { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |
32 |
0 31
|
wceq |
|- ContOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |