| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccop |
|- ContOp |
| 1 |
|
vt |
|- t |
| 2 |
|
chba |
|- ~H |
| 3 |
|
cmap |
|- ^m |
| 4 |
2 2 3
|
co |
|- ( ~H ^m ~H ) |
| 5 |
|
vx |
|- x |
| 6 |
|
vy |
|- y |
| 7 |
|
crp |
|- RR+ |
| 8 |
|
vz |
|- z |
| 9 |
|
vw |
|- w |
| 10 |
|
cno |
|- normh |
| 11 |
9
|
cv |
|- w |
| 12 |
|
cmv |
|- -h |
| 13 |
5
|
cv |
|- x |
| 14 |
11 13 12
|
co |
|- ( w -h x ) |
| 15 |
14 10
|
cfv |
|- ( normh ` ( w -h x ) ) |
| 16 |
|
clt |
|- < |
| 17 |
8
|
cv |
|- z |
| 18 |
15 17 16
|
wbr |
|- ( normh ` ( w -h x ) ) < z |
| 19 |
1
|
cv |
|- t |
| 20 |
11 19
|
cfv |
|- ( t ` w ) |
| 21 |
13 19
|
cfv |
|- ( t ` x ) |
| 22 |
20 21 12
|
co |
|- ( ( t ` w ) -h ( t ` x ) ) |
| 23 |
22 10
|
cfv |
|- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) |
| 24 |
6
|
cv |
|- y |
| 25 |
23 24 16
|
wbr |
|- ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y |
| 26 |
18 25
|
wi |
|- ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 27 |
26 9 2
|
wral |
|- A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 28 |
27 8 7
|
wrex |
|- E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 29 |
28 6 7
|
wral |
|- A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 30 |
29 5 2
|
wral |
|- A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) |
| 31 |
30 1 4
|
crab |
|- { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |
| 32 |
0 31
|
wceq |
|- ContOp = { t e. ( ~H ^m ~H ) | A. x e. ~H A. y e. RR+ E. z e. RR+ A. w e. ~H ( ( normh ` ( w -h x ) ) < z -> ( normh ` ( ( t ` w ) -h ( t ` x ) ) ) < y ) } |