Metamath Proof Explorer


Definition df-cnrm

Description: Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion df-cnrm
|- CNrm = { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnrm
 |-  CNrm
1 vj
 |-  j
2 ctop
 |-  Top
3 vx
 |-  x
4 1 cv
 |-  j
5 4 cuni
 |-  U. j
6 5 cpw
 |-  ~P U. j
7 crest
 |-  |`t
8 3 cv
 |-  x
9 4 8 7 co
 |-  ( j |`t x )
10 cnrm
 |-  Nrm
11 9 10 wcel
 |-  ( j |`t x ) e. Nrm
12 11 3 6 wral
 |-  A. x e. ~P U. j ( j |`t x ) e. Nrm
13 12 1 2 crab
 |-  { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm }
14 0 13 wceq
 |-  CNrm = { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm }