Description: Define completely normal spaces. A space is completely normal if all its subspaces are normal. (Contributed by Mario Carneiro, 26-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnrm | |- CNrm = { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnrm | |- CNrm |
|
1 | vj | |- j |
|
2 | ctop | |- Top |
|
3 | vx | |- x |
|
4 | 1 | cv | |- j |
5 | 4 | cuni | |- U. j |
6 | 5 | cpw | |- ~P U. j |
7 | crest | |- |`t |
|
8 | 3 | cv | |- x |
9 | 4 8 7 | co | |- ( j |`t x ) |
10 | cnrm | |- Nrm |
|
11 | 9 10 | wcel | |- ( j |`t x ) e. Nrm |
12 | 11 3 6 | wral | |- A. x e. ~P U. j ( j |`t x ) e. Nrm |
13 | 12 1 2 | crab | |- { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm } |
14 | 0 13 | wceq | |- CNrm = { j e. Top | A. x e. ~P U. j ( j |`t x ) e. Nrm } |