Metamath Proof Explorer


Definition df-cntr

Description: Define thecenter of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cntr
|- Cntr = ( m e. _V |-> ( ( Cntz ` m ) ` ( Base ` m ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccntr
 |-  Cntr
1 vm
 |-  m
2 cvv
 |-  _V
3 ccntz
 |-  Cntz
4 1 cv
 |-  m
5 4 3 cfv
 |-  ( Cntz ` m )
6 cbs
 |-  Base
7 4 6 cfv
 |-  ( Base ` m )
8 7 5 cfv
 |-  ( ( Cntz ` m ) ` ( Base ` m ) )
9 1 2 8 cmpt
 |-  ( m e. _V |-> ( ( Cntz ` m ) ` ( Base ` m ) ) )
10 0 9 wceq
 |-  Cntr = ( m e. _V |-> ( ( Cntz ` m ) ` ( Base ` m ) ) )