Step |
Hyp |
Ref |
Expression |
0 |
|
ccntz |
|- Cntz |
1 |
|
vm |
|- m |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- m |
6 |
5 4
|
cfv |
|- ( Base ` m ) |
7 |
6
|
cpw |
|- ~P ( Base ` m ) |
8 |
|
vx |
|- x |
9 |
|
vy |
|- y |
10 |
3
|
cv |
|- s |
11 |
8
|
cv |
|- x |
12 |
|
cplusg |
|- +g |
13 |
5 12
|
cfv |
|- ( +g ` m ) |
14 |
9
|
cv |
|- y |
15 |
11 14 13
|
co |
|- ( x ( +g ` m ) y ) |
16 |
14 11 13
|
co |
|- ( y ( +g ` m ) x ) |
17 |
15 16
|
wceq |
|- ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
18 |
17 9 10
|
wral |
|- A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
19 |
18 8 6
|
crab |
|- { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } |
20 |
3 7 19
|
cmpt |
|- ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) |
21 |
1 2 20
|
cmpt |
|- ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |
22 |
0 21
|
wceq |
|- Cntz = ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |