| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccntz |
|- Cntz |
| 1 |
|
vm |
|- m |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- m |
| 6 |
5 4
|
cfv |
|- ( Base ` m ) |
| 7 |
6
|
cpw |
|- ~P ( Base ` m ) |
| 8 |
|
vx |
|- x |
| 9 |
|
vy |
|- y |
| 10 |
3
|
cv |
|- s |
| 11 |
8
|
cv |
|- x |
| 12 |
|
cplusg |
|- +g |
| 13 |
5 12
|
cfv |
|- ( +g ` m ) |
| 14 |
9
|
cv |
|- y |
| 15 |
11 14 13
|
co |
|- ( x ( +g ` m ) y ) |
| 16 |
14 11 13
|
co |
|- ( y ( +g ` m ) x ) |
| 17 |
15 16
|
wceq |
|- ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
| 18 |
17 9 10
|
wral |
|- A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) |
| 19 |
18 8 6
|
crab |
|- { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } |
| 20 |
3 7 19
|
cmpt |
|- ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) |
| 21 |
1 2 20
|
cmpt |
|- ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |
| 22 |
0 21
|
wceq |
|- Cntz = ( m e. _V |-> ( s e. ~P ( Base ` m ) |-> { x e. ( Base ` m ) | A. y e. s ( x ( +g ` m ) y ) = ( y ( +g ` m ) x ) } ) ) |