Description: A device to add commutativity to various sorts of rings. I use ran g because I suppose g has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-com2 | |- Com2 = { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccm2 | |- Com2 |
|
1 | vg | |- g |
|
2 | vh | |- h |
|
3 | va | |- a |
|
4 | 1 | cv | |- g |
5 | 4 | crn | |- ran g |
6 | vb | |- b |
|
7 | 3 | cv | |- a |
8 | 2 | cv | |- h |
9 | 6 | cv | |- b |
10 | 7 9 8 | co | |- ( a h b ) |
11 | 9 7 8 | co | |- ( b h a ) |
12 | 10 11 | wceq | |- ( a h b ) = ( b h a ) |
13 | 12 6 5 | wral | |- A. b e. ran g ( a h b ) = ( b h a ) |
14 | 13 3 5 | wral | |- A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) |
15 | 14 1 2 | copab | |- { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) } |
16 | 0 15 | wceq | |- Com2 = { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) } |