Metamath Proof Explorer


Definition df-com2

Description: A device to add commutativity to various sorts of rings. I use ran g because I suppose g has a neutral element and therefore is onto. (Contributed by FL, 6-Sep-2009) (New usage is discouraged.)

Ref Expression
Assertion df-com2
|- Com2 = { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccm2
 |-  Com2
1 vg
 |-  g
2 vh
 |-  h
3 va
 |-  a
4 1 cv
 |-  g
5 4 crn
 |-  ran g
6 vb
 |-  b
7 3 cv
 |-  a
8 2 cv
 |-  h
9 6 cv
 |-  b
10 7 9 8 co
 |-  ( a h b )
11 9 7 8 co
 |-  ( b h a )
12 10 11 wceq
 |-  ( a h b ) = ( b h a )
13 12 6 5 wral
 |-  A. b e. ran g ( a h b ) = ( b h a )
14 13 3 5 wral
 |-  A. a e. ran g A. b e. ran g ( a h b ) = ( b h a )
15 14 1 2 copab
 |-  { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) }
16 0 15 wceq
 |-  Com2 = { <. g , h >. | A. a e. ran g A. b e. ran g ( a h b ) = ( b h a ) }