| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccomf |  |-  comf | 
						
							| 1 |  | vc |  |-  c | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  c | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` c ) | 
						
							| 7 | 6 6 | cxp |  |-  ( ( Base ` c ) X. ( Base ` c ) ) | 
						
							| 8 |  | vy |  |-  y | 
						
							| 9 |  | vg |  |-  g | 
						
							| 10 |  | c2nd |  |-  2nd | 
						
							| 11 | 3 | cv |  |-  x | 
						
							| 12 | 11 10 | cfv |  |-  ( 2nd ` x ) | 
						
							| 13 |  | chom |  |-  Hom | 
						
							| 14 | 5 13 | cfv |  |-  ( Hom ` c ) | 
						
							| 15 | 8 | cv |  |-  y | 
						
							| 16 | 12 15 14 | co |  |-  ( ( 2nd ` x ) ( Hom ` c ) y ) | 
						
							| 17 |  | vf |  |-  f | 
						
							| 18 | 11 14 | cfv |  |-  ( ( Hom ` c ) ` x ) | 
						
							| 19 | 9 | cv |  |-  g | 
						
							| 20 |  | cco |  |-  comp | 
						
							| 21 | 5 20 | cfv |  |-  ( comp ` c ) | 
						
							| 22 | 11 15 21 | co |  |-  ( x ( comp ` c ) y ) | 
						
							| 23 | 17 | cv |  |-  f | 
						
							| 24 | 19 23 22 | co |  |-  ( g ( x ( comp ` c ) y ) f ) | 
						
							| 25 | 9 17 16 18 24 | cmpo |  |-  ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) | 
						
							| 26 | 3 8 7 6 25 | cmpo |  |-  ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) | 
						
							| 27 | 1 2 26 | cmpt |  |-  ( c e. _V |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) ) | 
						
							| 28 | 0 27 | wceq |  |-  comf = ( c e. _V |-> ( x e. ( ( Base ` c ) X. ( Base ` c ) ) , y e. ( Base ` c ) |-> ( g e. ( ( 2nd ` x ) ( Hom ` c ) y ) , f e. ( ( Hom ` c ) ` x ) |-> ( g ( x ( comp ` c ) y ) f ) ) ) ) |