Step |
Hyp |
Ref |
Expression |
0 |
|
cconcat |
|- ++ |
1 |
|
vs |
|- s |
2 |
|
cvv |
|- _V |
3 |
|
vt |
|- t |
4 |
|
vx |
|- x |
5 |
|
cc0 |
|- 0 |
6 |
|
cfzo |
|- ..^ |
7 |
|
chash |
|- # |
8 |
1
|
cv |
|- s |
9 |
8 7
|
cfv |
|- ( # ` s ) |
10 |
|
caddc |
|- + |
11 |
3
|
cv |
|- t |
12 |
11 7
|
cfv |
|- ( # ` t ) |
13 |
9 12 10
|
co |
|- ( ( # ` s ) + ( # ` t ) ) |
14 |
5 13 6
|
co |
|- ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |
15 |
4
|
cv |
|- x |
16 |
5 9 6
|
co |
|- ( 0 ..^ ( # ` s ) ) |
17 |
15 16
|
wcel |
|- x e. ( 0 ..^ ( # ` s ) ) |
18 |
15 8
|
cfv |
|- ( s ` x ) |
19 |
|
cmin |
|- - |
20 |
15 9 19
|
co |
|- ( x - ( # ` s ) ) |
21 |
20 11
|
cfv |
|- ( t ` ( x - ( # ` s ) ) ) |
22 |
17 18 21
|
cif |
|- if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) |
23 |
4 14 22
|
cmpt |
|- ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) |
24 |
1 3 2 2 23
|
cmpo |
|- ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |
25 |
0 24
|
wceq |
|- ++ = ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |