| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cconcat |
|- ++ |
| 1 |
|
vs |
|- s |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vt |
|- t |
| 4 |
|
vx |
|- x |
| 5 |
|
cc0 |
|- 0 |
| 6 |
|
cfzo |
|- ..^ |
| 7 |
|
chash |
|- # |
| 8 |
1
|
cv |
|- s |
| 9 |
8 7
|
cfv |
|- ( # ` s ) |
| 10 |
|
caddc |
|- + |
| 11 |
3
|
cv |
|- t |
| 12 |
11 7
|
cfv |
|- ( # ` t ) |
| 13 |
9 12 10
|
co |
|- ( ( # ` s ) + ( # ` t ) ) |
| 14 |
5 13 6
|
co |
|- ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |
| 15 |
4
|
cv |
|- x |
| 16 |
5 9 6
|
co |
|- ( 0 ..^ ( # ` s ) ) |
| 17 |
15 16
|
wcel |
|- x e. ( 0 ..^ ( # ` s ) ) |
| 18 |
15 8
|
cfv |
|- ( s ` x ) |
| 19 |
|
cmin |
|- - |
| 20 |
15 9 19
|
co |
|- ( x - ( # ` s ) ) |
| 21 |
20 11
|
cfv |
|- ( t ` ( x - ( # ` s ) ) ) |
| 22 |
17 18 21
|
cif |
|- if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) |
| 23 |
4 14 22
|
cmpt |
|- ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) |
| 24 |
1 3 2 2 23
|
cmpo |
|- ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |
| 25 |
0 24
|
wceq |
|- ++ = ( s e. _V , t e. _V |-> ( x e. ( 0 ..^ ( ( # ` s ) + ( # ` t ) ) ) |-> if ( x e. ( 0 ..^ ( # ` s ) ) , ( s ` x ) , ( t ` ( x - ( # ` s ) ) ) ) ) ) |