Metamath Proof Explorer


Definition df-conn

Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)

Ref Expression
Assertion df-conn
|- Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cconn
 |-  Conn
1 vj
 |-  j
2 ctop
 |-  Top
3 1 cv
 |-  j
4 ccld
 |-  Clsd
5 3 4 cfv
 |-  ( Clsd ` j )
6 3 5 cin
 |-  ( j i^i ( Clsd ` j ) )
7 c0
 |-  (/)
8 3 cuni
 |-  U. j
9 7 8 cpr
 |-  { (/) , U. j }
10 6 9 wceq
 |-  ( j i^i ( Clsd ` j ) ) = { (/) , U. j }
11 10 1 2 crab
 |-  { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } }
12 0 11 wceq
 |-  Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } }