Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | df-conn | |- Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cconn | |- Conn |
|
1 | vj | |- j |
|
2 | ctop | |- Top |
|
3 | 1 | cv | |- j |
4 | ccld | |- Clsd |
|
5 | 3 4 | cfv | |- ( Clsd ` j ) |
6 | 3 5 | cin | |- ( j i^i ( Clsd ` j ) ) |
7 | c0 | |- (/) |
|
8 | 3 | cuni | |- U. j |
9 | 7 8 | cpr | |- { (/) , U. j } |
10 | 6 9 | wceq | |- ( j i^i ( Clsd ` j ) ) = { (/) , U. j } |
11 | 10 1 2 | crab | |- { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } |
12 | 0 11 | wceq | |- Conn = { j e. Top | ( j i^i ( Clsd ` j ) ) = { (/) , U. j } } |