Step |
Hyp |
Ref |
Expression |
0 |
|
ccvr |
|- |
1 |
|
vp |
|- p |
2 |
|
cvv |
|- _V |
3 |
|
va |
|- a |
4 |
|
vb |
|- b |
5 |
3
|
cv |
|- a |
6 |
|
cbs |
|- Base |
7 |
1
|
cv |
|- p |
8 |
7 6
|
cfv |
|- ( Base ` p ) |
9 |
5 8
|
wcel |
|- a e. ( Base ` p ) |
10 |
4
|
cv |
|- b |
11 |
10 8
|
wcel |
|- b e. ( Base ` p ) |
12 |
9 11
|
wa |
|- ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) |
13 |
|
cplt |
|- lt |
14 |
7 13
|
cfv |
|- ( lt ` p ) |
15 |
5 10 14
|
wbr |
|- a ( lt ` p ) b |
16 |
|
vz |
|- z |
17 |
16
|
cv |
|- z |
18 |
5 17 14
|
wbr |
|- a ( lt ` p ) z |
19 |
17 10 14
|
wbr |
|- z ( lt ` p ) b |
20 |
18 19
|
wa |
|- ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
21 |
20 16 8
|
wrex |
|- E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
22 |
21
|
wn |
|- -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
23 |
12 15 22
|
w3a |
|- ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) |
24 |
23 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } |
25 |
1 2 24
|
cmpt |
|- ( p e. _V |-> { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } ) |
26 |
0 25
|
wceq |
|- { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } ) |