| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccvr |
|- |
| 1 |
|
vp |
|- p |
| 2 |
|
cvv |
|- _V |
| 3 |
|
va |
|- a |
| 4 |
|
vb |
|- b |
| 5 |
3
|
cv |
|- a |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- p |
| 8 |
7 6
|
cfv |
|- ( Base ` p ) |
| 9 |
5 8
|
wcel |
|- a e. ( Base ` p ) |
| 10 |
4
|
cv |
|- b |
| 11 |
10 8
|
wcel |
|- b e. ( Base ` p ) |
| 12 |
9 11
|
wa |
|- ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) |
| 13 |
|
cplt |
|- lt |
| 14 |
7 13
|
cfv |
|- ( lt ` p ) |
| 15 |
5 10 14
|
wbr |
|- a ( lt ` p ) b |
| 16 |
|
vz |
|- z |
| 17 |
16
|
cv |
|- z |
| 18 |
5 17 14
|
wbr |
|- a ( lt ` p ) z |
| 19 |
17 10 14
|
wbr |
|- z ( lt ` p ) b |
| 20 |
18 19
|
wa |
|- ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
| 21 |
20 16 8
|
wrex |
|- E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
| 22 |
21
|
wn |
|- -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) |
| 23 |
12 15 22
|
w3a |
|- ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) |
| 24 |
23 3 4
|
copab |
|- { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } |
| 25 |
1 2 24
|
cmpt |
|- ( p e. _V |-> { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } ) |
| 26 |
0 25
|
wceq |
|- { <. a , b >. | ( ( a e. ( Base ` p ) /\ b e. ( Base ` p ) ) /\ a ( lt ` p ) b /\ -. E. z e. ( Base ` p ) ( a ( lt ` p ) z /\ z ( lt ` p ) b ) ) } ) |