Step |
Hyp |
Ref |
Expression |
0 |
|
ccph |
|- CPreHil |
1 |
|
vw |
|- w |
2 |
|
cphl |
|- PreHil |
3 |
|
cnlm |
|- NrmMod |
4 |
2 3
|
cin |
|- ( PreHil i^i NrmMod ) |
5 |
|
csca |
|- Scalar |
6 |
1
|
cv |
|- w |
7 |
6 5
|
cfv |
|- ( Scalar ` w ) |
8 |
|
vf |
|- f |
9 |
|
cbs |
|- Base |
10 |
8
|
cv |
|- f |
11 |
10 9
|
cfv |
|- ( Base ` f ) |
12 |
|
vk |
|- k |
13 |
|
ccnfld |
|- CCfld |
14 |
|
cress |
|- |`s |
15 |
12
|
cv |
|- k |
16 |
13 15 14
|
co |
|- ( CCfld |`s k ) |
17 |
10 16
|
wceq |
|- f = ( CCfld |`s k ) |
18 |
|
csqrt |
|- sqrt |
19 |
|
cc0 |
|- 0 |
20 |
|
cico |
|- [,) |
21 |
|
cpnf |
|- +oo |
22 |
19 21 20
|
co |
|- ( 0 [,) +oo ) |
23 |
15 22
|
cin |
|- ( k i^i ( 0 [,) +oo ) ) |
24 |
18 23
|
cima |
|- ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) |
25 |
24 15
|
wss |
|- ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k |
26 |
|
cnm |
|- norm |
27 |
6 26
|
cfv |
|- ( norm ` w ) |
28 |
|
vx |
|- x |
29 |
6 9
|
cfv |
|- ( Base ` w ) |
30 |
28
|
cv |
|- x |
31 |
|
cip |
|- .i |
32 |
6 31
|
cfv |
|- ( .i ` w ) |
33 |
30 30 32
|
co |
|- ( x ( .i ` w ) x ) |
34 |
33 18
|
cfv |
|- ( sqrt ` ( x ( .i ` w ) x ) ) |
35 |
28 29 34
|
cmpt |
|- ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) |
36 |
27 35
|
wceq |
|- ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) |
37 |
17 25 36
|
w3a |
|- ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
38 |
37 12 11
|
wsbc |
|- [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
39 |
38 8 7
|
wsbc |
|- [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) |
40 |
39 1 4
|
crab |
|- { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |
41 |
0 40
|
wceq |
|- CPreHil = { w e. ( PreHil i^i NrmMod ) | [. ( Scalar ` w ) / f ]. [. ( Base ` f ) / k ]. ( f = ( CCfld |`s k ) /\ ( sqrt " ( k i^i ( 0 [,) +oo ) ) ) C_ k /\ ( norm ` w ) = ( x e. ( Base ` w ) |-> ( sqrt ` ( x ( .i ` w ) x ) ) ) ) } |