| Step | Hyp | Ref | Expression | 
						
							| 0 |  | ccpmat |  |-  ConstPolyMat | 
						
							| 1 |  | vn |  |-  n | 
						
							| 2 |  | cfn |  |-  Fin | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 |  | cvv |  |-  _V | 
						
							| 5 |  | vm |  |-  m | 
						
							| 6 |  | cbs |  |-  Base | 
						
							| 7 | 1 | cv |  |-  n | 
						
							| 8 |  | cmat |  |-  Mat | 
						
							| 9 |  | cpl1 |  |-  Poly1 | 
						
							| 10 | 3 | cv |  |-  r | 
						
							| 11 | 10 9 | cfv |  |-  ( Poly1 ` r ) | 
						
							| 12 | 7 11 8 | co |  |-  ( n Mat ( Poly1 ` r ) ) | 
						
							| 13 | 12 6 | cfv |  |-  ( Base ` ( n Mat ( Poly1 ` r ) ) ) | 
						
							| 14 |  | vi |  |-  i | 
						
							| 15 |  | vj |  |-  j | 
						
							| 16 |  | vk |  |-  k | 
						
							| 17 |  | cn |  |-  NN | 
						
							| 18 |  | cco1 |  |-  coe1 | 
						
							| 19 | 14 | cv |  |-  i | 
						
							| 20 | 5 | cv |  |-  m | 
						
							| 21 | 15 | cv |  |-  j | 
						
							| 22 | 19 21 20 | co |  |-  ( i m j ) | 
						
							| 23 | 22 18 | cfv |  |-  ( coe1 ` ( i m j ) ) | 
						
							| 24 | 16 | cv |  |-  k | 
						
							| 25 | 24 23 | cfv |  |-  ( ( coe1 ` ( i m j ) ) ` k ) | 
						
							| 26 |  | c0g |  |-  0g | 
						
							| 27 | 10 26 | cfv |  |-  ( 0g ` r ) | 
						
							| 28 | 25 27 | wceq |  |-  ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) | 
						
							| 29 | 28 16 17 | wral |  |-  A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) | 
						
							| 30 | 29 15 7 | wral |  |-  A. j e. n A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) | 
						
							| 31 | 30 14 7 | wral |  |-  A. i e. n A. j e. n A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) | 
						
							| 32 | 31 5 13 | crab |  |-  { m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) | A. i e. n A. j e. n A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) } | 
						
							| 33 | 1 3 2 4 32 | cmpo |  |-  ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) | A. i e. n A. j e. n A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) } ) | 
						
							| 34 | 0 33 | wceq |  |-  ConstPolyMat = ( n e. Fin , r e. _V |-> { m e. ( Base ` ( n Mat ( Poly1 ` r ) ) ) | A. i e. n A. j e. n A. k e. NN ( ( coe1 ` ( i m j ) ) ` k ) = ( 0g ` r ) } ) |