Step |
Hyp |
Ref |
Expression |
0 |
|
ccpmat2mat |
|- cPolyMatToMat |
1 |
|
vn |
|- n |
2 |
|
cfn |
|- Fin |
3 |
|
vr |
|- r |
4 |
|
cvv |
|- _V |
5 |
|
vm |
|- m |
6 |
1
|
cv |
|- n |
7 |
|
ccpmat |
|- ConstPolyMat |
8 |
3
|
cv |
|- r |
9 |
6 8 7
|
co |
|- ( n ConstPolyMat r ) |
10 |
|
vx |
|- x |
11 |
|
vy |
|- y |
12 |
|
cco1 |
|- coe1 |
13 |
10
|
cv |
|- x |
14 |
5
|
cv |
|- m |
15 |
11
|
cv |
|- y |
16 |
13 15 14
|
co |
|- ( x m y ) |
17 |
16 12
|
cfv |
|- ( coe1 ` ( x m y ) ) |
18 |
|
cc0 |
|- 0 |
19 |
18 17
|
cfv |
|- ( ( coe1 ` ( x m y ) ) ` 0 ) |
20 |
10 11 6 6 19
|
cmpo |
|- ( x e. n , y e. n |-> ( ( coe1 ` ( x m y ) ) ` 0 ) ) |
21 |
5 9 20
|
cmpt |
|- ( m e. ( n ConstPolyMat r ) |-> ( x e. n , y e. n |-> ( ( coe1 ` ( x m y ) ) ` 0 ) ) ) |
22 |
1 3 2 4 21
|
cmpo |
|- ( n e. Fin , r e. _V |-> ( m e. ( n ConstPolyMat r ) |-> ( x e. n , y e. n |-> ( ( coe1 ` ( x m y ) ) ` 0 ) ) ) ) |
23 |
0 22
|
wceq |
|- cPolyMatToMat = ( n e. Fin , r e. _V |-> ( m e. ( n ConstPolyMat r ) |-> ( x e. n , y e. n |-> ( ( coe1 ` ( x m y ) ) ` 0 ) ) ) ) |