| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ccpn |
|- C^n |
| 1 |
|
vs |
|- s |
| 2 |
|
cc |
|- CC |
| 3 |
2
|
cpw |
|- ~P CC |
| 4 |
|
vx |
|- x |
| 5 |
|
cn0 |
|- NN0 |
| 6 |
|
vf |
|- f |
| 7 |
|
cpm |
|- ^pm |
| 8 |
1
|
cv |
|- s |
| 9 |
2 8 7
|
co |
|- ( CC ^pm s ) |
| 10 |
|
cdvn |
|- Dn |
| 11 |
6
|
cv |
|- f |
| 12 |
8 11 10
|
co |
|- ( s Dn f ) |
| 13 |
4
|
cv |
|- x |
| 14 |
13 12
|
cfv |
|- ( ( s Dn f ) ` x ) |
| 15 |
11
|
cdm |
|- dom f |
| 16 |
|
ccncf |
|- -cn-> |
| 17 |
15 2 16
|
co |
|- ( dom f -cn-> CC ) |
| 18 |
14 17
|
wcel |
|- ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) |
| 19 |
18 6 9
|
crab |
|- { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } |
| 20 |
4 5 19
|
cmpt |
|- ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) |
| 21 |
1 3 20
|
cmpt |
|- ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |
| 22 |
0 21
|
wceq |
|- C^n = ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |