Step |
Hyp |
Ref |
Expression |
0 |
|
ccpn |
|- C^n |
1 |
|
vs |
|- s |
2 |
|
cc |
|- CC |
3 |
2
|
cpw |
|- ~P CC |
4 |
|
vx |
|- x |
5 |
|
cn0 |
|- NN0 |
6 |
|
vf |
|- f |
7 |
|
cpm |
|- ^pm |
8 |
1
|
cv |
|- s |
9 |
2 8 7
|
co |
|- ( CC ^pm s ) |
10 |
|
cdvn |
|- Dn |
11 |
6
|
cv |
|- f |
12 |
8 11 10
|
co |
|- ( s Dn f ) |
13 |
4
|
cv |
|- x |
14 |
13 12
|
cfv |
|- ( ( s Dn f ) ` x ) |
15 |
11
|
cdm |
|- dom f |
16 |
|
ccncf |
|- -cn-> |
17 |
15 2 16
|
co |
|- ( dom f -cn-> CC ) |
18 |
14 17
|
wcel |
|- ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) |
19 |
18 6 9
|
crab |
|- { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } |
20 |
4 5 19
|
cmpt |
|- ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) |
21 |
1 3 20
|
cmpt |
|- ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |
22 |
0 21
|
wceq |
|- C^n = ( s e. ~P CC |-> ( x e. NN0 |-> { f e. ( CC ^pm s ) | ( ( s Dn f ) ` x ) e. ( dom f -cn-> CC ) } ) ) |