Metamath Proof Explorer


Definition df-cring

Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Assertion df-cring
|- CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccrg
 |-  CRing
1 vf
 |-  f
2 crg
 |-  Ring
3 cmgp
 |-  mulGrp
4 1 cv
 |-  f
5 4 3 cfv
 |-  ( mulGrp ` f )
6 ccmn
 |-  CMnd
7 5 6 wcel
 |-  ( mulGrp ` f ) e. CMnd
8 7 1 2 crab
 |-  { f e. Ring | ( mulGrp ` f ) e. CMnd }
9 0 8 wceq
 |-  CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd }