Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cring | |- CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccrg | |- CRing |
|
| 1 | vf | |- f |
|
| 2 | crg | |- Ring |
|
| 3 | cmgp | |- mulGrp |
|
| 4 | 1 | cv | |- f |
| 5 | 4 3 | cfv | |- ( mulGrp ` f ) |
| 6 | ccmn | |- CMnd |
|
| 7 | 5 6 | wcel | |- ( mulGrp ` f ) e. CMnd |
| 8 | 7 1 2 | crab | |- { f e. Ring | ( mulGrp ` f ) e. CMnd } |
| 9 | 0 8 | wceq | |- CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd } |