Description: Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cring | |- CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccrg | |- CRing |
|
1 | vf | |- f |
|
2 | crg | |- Ring |
|
3 | cmgp | |- mulGrp |
|
4 | 1 | cv | |- f |
5 | 4 3 | cfv | |- ( mulGrp ` f ) |
6 | ccmn | |- CMnd |
|
7 | 5 6 | wcel | |- ( mulGrp ` f ) e. CMnd |
8 | 7 1 2 | crab | |- { f e. Ring | ( mulGrp ` f ) e. CMnd } |
9 | 0 8 | wceq | |- CRing = { f e. Ring | ( mulGrp ` f ) e. CMnd } |