Metamath Proof Explorer


Definition df-csb

Description: Define the proper substitution of a class for a set into another class. The underlined brackets distinguish it from the substitution into a wff, wsbc , to prevent ambiguity. Theorem sbcel1g shows an example of how ambiguity could arise if we did not use distinguished brackets. When A is a proper class, this evaluates to the empty set (see csbprc ). Theorem sbccsb recovers substitution into a wff from this definition. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion df-csb
|- [_ A / x ]_ B = { y | [. A / x ]. y e. B }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 vx
 |-  x
2 cB
 |-  B
3 1 0 2 csb
 |-  [_ A / x ]_ B
4 vy
 |-  y
5 4 cv
 |-  y
6 5 2 wcel
 |-  y e. B
7 6 1 0 wsbc
 |-  [. A / x ]. y e. B
8 7 4 cab
 |-  { y | [. A / x ]. y e. B }
9 3 8 wceq
 |-  [_ A / x ]_ B = { y | [. A / x ]. y e. B }