Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-css | |- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccss | |- ClSubSp |
|
| 1 | vh | |- h |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | 3 | cv | |- s |
| 5 | cocv | |- ocv |
|
| 6 | 1 | cv | |- h |
| 7 | 6 5 | cfv | |- ( ocv ` h ) |
| 8 | 4 7 | cfv | |- ( ( ocv ` h ) ` s ) |
| 9 | 8 7 | cfv | |- ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) |
| 10 | 4 9 | wceq | |- s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) |
| 11 | 10 3 | cab | |- { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } |
| 12 | 1 2 11 | cmpt | |- ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |
| 13 | 0 12 | wceq | |- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |