Metamath Proof Explorer


Definition df-css

Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)

Ref Expression
Assertion df-css
|- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccss
 |-  ClSubSp
1 vh
 |-  h
2 cvv
 |-  _V
3 vs
 |-  s
4 3 cv
 |-  s
5 cocv
 |-  ocv
6 1 cv
 |-  h
7 6 5 cfv
 |-  ( ocv ` h )
8 4 7 cfv
 |-  ( ( ocv ` h ) ` s )
9 8 7 cfv
 |-  ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) )
10 4 9 wceq
 |-  s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) )
11 10 3 cab
 |-  { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) }
12 1 2 11 cmpt
 |-  ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } )
13 0 12 wceq
 |-  ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } )