Description: Define the set of closed (linear) subspaces of a given pre-Hilbert space. (Contributed by NM, 7-Oct-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-css | |- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccss | |- ClSubSp |
|
1 | vh | |- h |
|
2 | cvv | |- _V |
|
3 | vs | |- s |
|
4 | 3 | cv | |- s |
5 | cocv | |- ocv |
|
6 | 1 | cv | |- h |
7 | 6 5 | cfv | |- ( ocv ` h ) |
8 | 4 7 | cfv | |- ( ( ocv ` h ) ` s ) |
9 | 8 7 | cfv | |- ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) |
10 | 4 9 | wceq | |- s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) |
11 | 10 3 | cab | |- { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } |
12 | 1 2 11 | cmpt | |- ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |
13 | 0 12 | wceq | |- ClSubSp = ( h e. _V |-> { s | s = ( ( ocv ` h ) ` ( ( ocv ` h ) ` s ) ) } ) |