Metamath Proof Explorer


Definition df-cur

Description: Define the currying of F , which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-cur
|- curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF
 |-  F
1 0 ccur
 |-  curry F
2 vx
 |-  x
3 0 cdm
 |-  dom F
4 3 cdm
 |-  dom dom F
5 vy
 |-  y
6 vz
 |-  z
7 2 cv
 |-  x
8 5 cv
 |-  y
9 7 8 cop
 |-  <. x , y >.
10 6 cv
 |-  z
11 9 10 0 wbr
 |-  <. x , y >. F z
12 11 5 6 copab
 |-  { <. y , z >. | <. x , y >. F z }
13 2 4 12 cmpt
 |-  ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } )
14 1 13 wceq
 |-  curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } )