Description: Define the currying of F , which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cur | |- curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cF | |- F |
|
1 | 0 | ccur | |- curry F |
2 | vx | |- x |
|
3 | 0 | cdm | |- dom F |
4 | 3 | cdm | |- dom dom F |
5 | vy | |- y |
|
6 | vz | |- z |
|
7 | 2 | cv | |- x |
8 | 5 | cv | |- y |
9 | 7 8 | cop | |- <. x , y >. |
10 | 6 | cv | |- z |
11 | 9 10 0 | wbr | |- <. x , y >. F z |
12 | 11 5 6 | copab | |- { <. y , z >. | <. x , y >. F z } |
13 | 2 4 12 | cmpt | |- ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |
14 | 1 13 | wceq | |- curry F = ( x e. dom dom F |-> { <. y , z >. | <. x , y >. F z } ) |