Step |
Hyp |
Ref |
Expression |
0 |
|
ccusp |
|- CUnifSp |
1 |
|
vw |
|- w |
2 |
|
cusp |
|- UnifSp |
3 |
|
vc |
|- c |
4 |
|
cfil |
|- Fil |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- w |
7 |
6 5
|
cfv |
|- ( Base ` w ) |
8 |
7 4
|
cfv |
|- ( Fil ` ( Base ` w ) ) |
9 |
3
|
cv |
|- c |
10 |
|
ccfilu |
|- CauFilU |
11 |
|
cuss |
|- UnifSt |
12 |
6 11
|
cfv |
|- ( UnifSt ` w ) |
13 |
12 10
|
cfv |
|- ( CauFilU ` ( UnifSt ` w ) ) |
14 |
9 13
|
wcel |
|- c e. ( CauFilU ` ( UnifSt ` w ) ) |
15 |
|
ctopn |
|- TopOpen |
16 |
6 15
|
cfv |
|- ( TopOpen ` w ) |
17 |
|
cflim |
|- fLim |
18 |
16 9 17
|
co |
|- ( ( TopOpen ` w ) fLim c ) |
19 |
|
c0 |
|- (/) |
20 |
18 19
|
wne |
|- ( ( TopOpen ` w ) fLim c ) =/= (/) |
21 |
14 20
|
wi |
|- ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
22 |
21 3 8
|
wral |
|- A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) |
23 |
22 1 2
|
crab |
|- { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |
24 |
0 23
|
wceq |
|- CUnifSp = { w e. UnifSp | A. c e. ( Fil ` ( Base ` w ) ) ( c e. ( CauFilU ` ( UnifSt ` w ) ) -> ( ( TopOpen ` w ) fLim c ) =/= (/) ) } |