Step |
Hyp |
Ref |
Expression |
0 |
|
clc |
|- CvLat |
1 |
|
vk |
|- k |
2 |
|
cal |
|- AtLat |
3 |
|
va |
|- a |
4 |
|
catm |
|- Atoms |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( Atoms ` k ) |
7 |
|
vb |
|- b |
8 |
|
vc |
|- c |
9 |
|
cbs |
|- Base |
10 |
5 9
|
cfv |
|- ( Base ` k ) |
11 |
3
|
cv |
|- a |
12 |
|
cple |
|- le |
13 |
5 12
|
cfv |
|- ( le ` k ) |
14 |
8
|
cv |
|- c |
15 |
11 14 13
|
wbr |
|- a ( le ` k ) c |
16 |
15
|
wn |
|- -. a ( le ` k ) c |
17 |
|
cjn |
|- join |
18 |
5 17
|
cfv |
|- ( join ` k ) |
19 |
7
|
cv |
|- b |
20 |
14 19 18
|
co |
|- ( c ( join ` k ) b ) |
21 |
11 20 13
|
wbr |
|- a ( le ` k ) ( c ( join ` k ) b ) |
22 |
16 21
|
wa |
|- ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) |
23 |
14 11 18
|
co |
|- ( c ( join ` k ) a ) |
24 |
19 23 13
|
wbr |
|- b ( le ` k ) ( c ( join ` k ) a ) |
25 |
22 24
|
wi |
|- ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
26 |
25 8 10
|
wral |
|- A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
27 |
26 7 6
|
wral |
|- A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
28 |
27 3 6
|
wral |
|- A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) |
29 |
28 1 2
|
crab |
|- { k e. AtLat | A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) } |
30 |
0 29
|
wceq |
|- CvLat = { k e. AtLat | A. a e. ( Atoms ` k ) A. b e. ( Atoms ` k ) A. c e. ( Base ` k ) ( ( -. a ( le ` k ) c /\ a ( le ` k ) ( c ( join ` k ) b ) ) -> b ( le ` k ) ( c ( join ` k ) a ) ) } |