Metamath Proof Explorer


Definition df-cxp

Description: Define the power function on complex numbers. Note that the value of this function when x = 0 and ( Rey ) <_ 0 , y =/= 0 should properly be undefined, but defining it by convention this way simplifies the domain. (Contributed by Mario Carneiro, 2-Aug-2014)

Ref Expression
Assertion df-cxp
|- ^c = ( x e. CC , y e. CC |-> if ( x = 0 , if ( y = 0 , 1 , 0 ) , ( exp ` ( y x. ( log ` x ) ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccxp
 |-  ^c
1 vx
 |-  x
2 cc
 |-  CC
3 vy
 |-  y
4 1 cv
 |-  x
5 cc0
 |-  0
6 4 5 wceq
 |-  x = 0
7 3 cv
 |-  y
8 7 5 wceq
 |-  y = 0
9 c1
 |-  1
10 8 9 5 cif
 |-  if ( y = 0 , 1 , 0 )
11 ce
 |-  exp
12 cmul
 |-  x.
13 clog
 |-  log
14 4 13 cfv
 |-  ( log ` x )
15 7 14 12 co
 |-  ( y x. ( log ` x ) )
16 15 11 cfv
 |-  ( exp ` ( y x. ( log ` x ) ) )
17 6 10 16 cif
 |-  if ( x = 0 , if ( y = 0 , 1 , 0 ) , ( exp ` ( y x. ( log ` x ) ) ) )
18 1 3 2 2 17 cmpo
 |-  ( x e. CC , y e. CC |-> if ( x = 0 , if ( y = 0 , 1 , 0 ) , ( exp ` ( y x. ( log ` x ) ) ) ) )
19 0 18 wceq
 |-  ^c = ( x e. CC , y e. CC |-> if ( x = 0 , if ( y = 0 , 1 , 0 ) , ( exp ` ( y x. ( log ` x ) ) ) ) )