Metamath Proof Explorer


Definition df-cyg

Description: Define a cyclic group, which is a group with an element x , called the generator of the group, such that all elements in the group are multiples of x . A generator is usually not unique. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Assertion df-cyg
|- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccyg
 |-  CycGrp
1 vg
 |-  g
2 cgrp
 |-  Grp
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  g
6 5 4 cfv
 |-  ( Base ` g )
7 vn
 |-  n
8 cz
 |-  ZZ
9 7 cv
 |-  n
10 cmg
 |-  .g
11 5 10 cfv
 |-  ( .g ` g )
12 3 cv
 |-  x
13 9 12 11 co
 |-  ( n ( .g ` g ) x )
14 7 8 13 cmpt
 |-  ( n e. ZZ |-> ( n ( .g ` g ) x ) )
15 14 crn
 |-  ran ( n e. ZZ |-> ( n ( .g ` g ) x ) )
16 15 6 wceq
 |-  ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g )
17 16 3 6 wrex
 |-  E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g )
18 17 1 2 crab
 |-  { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }
19 0 18 wceq
 |-  CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }