Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Cyclic groups
df-cyg
Metamath Proof Explorer
Description: Define a cyclic group, which is a group with an element x , called
the generator of the group, such that all elements in the group are
multiples of x . A generator is usually not unique. (Contributed by Mario Carneiro , 21-Apr-2016)
Ref
Expression
Assertion
df-cyg
|- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ccyg
|- CycGrp
1
vg
|- g
2
cgrp
|- Grp
3
vx
|- x
4
cbs
|- Base
5
1
cv
|- g
6
5 4
cfv
|- ( Base ` g )
7
vn
|- n
8
cz
|- ZZ
9
7
cv
|- n
10
cmg
|- .g
11
5 10
cfv
|- ( .g ` g )
12
3
cv
|- x
13
9 12 11
co
|- ( n ( .g ` g ) x )
14
7 8 13
cmpt
|- ( n e. ZZ |-> ( n ( .g ` g ) x ) )
15
14
crn
|- ran ( n e. ZZ |-> ( n ( .g ` g ) x ) )
16
15 6
wceq
|- ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g )
17
16 3 6
wrex
|- E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g )
18
17 1 2
crab
|- { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }
19
0 18
wceq
|- CycGrp = { g e. Grp | E. x e. ( Base ` g ) ran ( n e. ZZ |-> ( n ( .g ` g ) x ) ) = ( Base ` g ) }