| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdchr |
|- DChr |
| 1 |
|
vn |
|- n |
| 2 |
|
cn |
|- NN |
| 3 |
|
czn |
|- Z/nZ |
| 4 |
1
|
cv |
|- n |
| 5 |
4 3
|
cfv |
|- ( Z/nZ ` n ) |
| 6 |
|
vz |
|- z |
| 7 |
|
vx |
|- x |
| 8 |
|
cmgp |
|- mulGrp |
| 9 |
6
|
cv |
|- z |
| 10 |
9 8
|
cfv |
|- ( mulGrp ` z ) |
| 11 |
|
cmhm |
|- MndHom |
| 12 |
|
ccnfld |
|- CCfld |
| 13 |
12 8
|
cfv |
|- ( mulGrp ` CCfld ) |
| 14 |
10 13 11
|
co |
|- ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) |
| 15 |
|
cbs |
|- Base |
| 16 |
9 15
|
cfv |
|- ( Base ` z ) |
| 17 |
|
cui |
|- Unit |
| 18 |
9 17
|
cfv |
|- ( Unit ` z ) |
| 19 |
16 18
|
cdif |
|- ( ( Base ` z ) \ ( Unit ` z ) ) |
| 20 |
|
cc0 |
|- 0 |
| 21 |
20
|
csn |
|- { 0 } |
| 22 |
19 21
|
cxp |
|- ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) |
| 23 |
7
|
cv |
|- x |
| 24 |
22 23
|
wss |
|- ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x |
| 25 |
24 7 14
|
crab |
|- { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } |
| 26 |
|
vb |
|- b |
| 27 |
|
cnx |
|- ndx |
| 28 |
27 15
|
cfv |
|- ( Base ` ndx ) |
| 29 |
26
|
cv |
|- b |
| 30 |
28 29
|
cop |
|- <. ( Base ` ndx ) , b >. |
| 31 |
|
cplusg |
|- +g |
| 32 |
27 31
|
cfv |
|- ( +g ` ndx ) |
| 33 |
|
cmul |
|- x. |
| 34 |
33
|
cof |
|- oF x. |
| 35 |
29 29
|
cxp |
|- ( b X. b ) |
| 36 |
34 35
|
cres |
|- ( oF x. |` ( b X. b ) ) |
| 37 |
32 36
|
cop |
|- <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. |
| 38 |
30 37
|
cpr |
|- { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } |
| 39 |
26 25 38
|
csb |
|- [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } |
| 40 |
6 5 39
|
csb |
|- [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } |
| 41 |
1 2 40
|
cmpt |
|- ( n e. NN |-> [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } ) |
| 42 |
0 41
|
wceq |
|- DChr = ( n e. NN |-> [_ ( Z/nZ ` n ) / z ]_ [_ { x e. ( ( mulGrp ` z ) MndHom ( mulGrp ` CCfld ) ) | ( ( ( Base ` z ) \ ( Unit ` z ) ) X. { 0 } ) C_ x } / b ]_ { <. ( Base ` ndx ) , b >. , <. ( +g ` ndx ) , ( oF x. |` ( b X. b ) ) >. } ) |