Metamath Proof Explorer


Definition df-dec

Description: Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 1 0 . For example, ( ; ; ; 1 0 0 0 + ; ; ; 2 0 0 0 ) = ; ; ; 3 0 0 0 1kp2ke3k . (Contributed by Mario Carneiro, 17-Apr-2015) (Revised by AV, 1-Aug-2021)

Ref Expression
Assertion df-dec
|- ; A B = ( ( ( 9 + 1 ) x. A ) + B )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 cdc
 |-  ; A B
3 c9
 |-  9
4 caddc
 |-  +
5 c1
 |-  1
6 3 5 4 co
 |-  ( 9 + 1 )
7 cmul
 |-  x.
8 6 0 7 co
 |-  ( ( 9 + 1 ) x. A )
9 8 1 4 co
 |-  ( ( ( 9 + 1 ) x. A ) + B )
10 2 9 wceq
 |-  ; A B = ( ( ( 9 + 1 ) x. A ) + B )