| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdip |
|- .iOLD |
| 1 |
|
vu |
|- u |
| 2 |
|
cnv |
|- NrmCVec |
| 3 |
|
vx |
|- x |
| 4 |
|
cba |
|- BaseSet |
| 5 |
1
|
cv |
|- u |
| 6 |
5 4
|
cfv |
|- ( BaseSet ` u ) |
| 7 |
|
vy |
|- y |
| 8 |
|
vk |
|- k |
| 9 |
|
c1 |
|- 1 |
| 10 |
|
cfz |
|- ... |
| 11 |
|
c4 |
|- 4 |
| 12 |
9 11 10
|
co |
|- ( 1 ... 4 ) |
| 13 |
|
ci |
|- _i |
| 14 |
|
cexp |
|- ^ |
| 15 |
8
|
cv |
|- k |
| 16 |
13 15 14
|
co |
|- ( _i ^ k ) |
| 17 |
|
cmul |
|- x. |
| 18 |
|
cnmcv |
|- normCV |
| 19 |
5 18
|
cfv |
|- ( normCV ` u ) |
| 20 |
3
|
cv |
|- x |
| 21 |
|
cpv |
|- +v |
| 22 |
5 21
|
cfv |
|- ( +v ` u ) |
| 23 |
|
cns |
|- .sOLD |
| 24 |
5 23
|
cfv |
|- ( .sOLD ` u ) |
| 25 |
7
|
cv |
|- y |
| 26 |
16 25 24
|
co |
|- ( ( _i ^ k ) ( .sOLD ` u ) y ) |
| 27 |
20 26 22
|
co |
|- ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) |
| 28 |
27 19
|
cfv |
|- ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) |
| 29 |
|
c2 |
|- 2 |
| 30 |
28 29 14
|
co |
|- ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) |
| 31 |
16 30 17
|
co |
|- ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) |
| 32 |
12 31 8
|
csu |
|- sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) |
| 33 |
|
cdiv |
|- / |
| 34 |
32 11 33
|
co |
|- ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) |
| 35 |
3 7 6 6 34
|
cmpo |
|- ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) |
| 36 |
1 2 35
|
cmpt |
|- ( u e. NrmCVec |-> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |
| 37 |
0 36
|
wceq |
|- .iOLD = ( u e. NrmCVec |-> ( x e. ( BaseSet ` u ) , y e. ( BaseSet ` u ) |-> ( sum_ k e. ( 1 ... 4 ) ( ( _i ^ k ) x. ( ( ( normCV ` u ) ` ( x ( +v ` u ) ( ( _i ^ k ) ( .sOLD ` u ) y ) ) ) ^ 2 ) ) / 4 ) ) ) |