Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | df-disj | |- ( Disj_ x e. A B <-> A. y E* x e. A y e. B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | vx | |- x |
|
1 | cA | |- A |
|
2 | cB | |- B |
|
3 | 0 1 2 | wdisj | |- Disj_ x e. A B |
4 | vy | |- y |
|
5 | 4 | cv | |- y |
6 | 5 2 | wcel | |- y e. B |
7 | 6 0 1 | wrmo | |- E* x e. A y e. B |
8 | 7 4 | wal | |- A. y E* x e. A y e. B |
9 | 3 8 | wb | |- ( Disj_ x e. A B <-> A. y E* x e. A y e. B ) |