Metamath Proof Explorer


Definition df-disj

Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion df-disj
|- ( Disj_ x e. A B <-> A. y E* x e. A y e. B )

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx
 |-  x
1 cA
 |-  A
2 cB
 |-  B
3 0 1 2 wdisj
 |-  Disj_ x e. A B
4 vy
 |-  y
5 4 cv
 |-  y
6 5 2 wcel
 |-  y e. B
7 6 0 1 wrmo
 |-  E* x e. A y e. B
8 7 4 wal
 |-  A. y E* x e. A y e. B
9 3 8 wb
 |-  ( Disj_ x e. A B <-> A. y E* x e. A y e. B )