Description: Define division. Theorem divmuli relates it to multiplication, and divcli and redivcli prove its closure laws. (Contributed by NM, 2-Feb-1995) Use divval instead. (Revised by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-div | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cdiv | |- / |
|
| 1 | vx | |- x |
|
| 2 | cc | |- CC |
|
| 3 | vy | |- y |
|
| 4 | cc0 | |- 0 |
|
| 5 | 4 | csn | |- { 0 } |
| 6 | 2 5 | cdif | |- ( CC \ { 0 } ) |
| 7 | vz | |- z |
|
| 8 | 3 | cv | |- y |
| 9 | cmul | |- x. |
|
| 10 | 7 | cv | |- z |
| 11 | 8 10 9 | co | |- ( y x. z ) |
| 12 | 1 | cv | |- x |
| 13 | 11 12 | wceq | |- ( y x. z ) = x |
| 14 | 13 7 2 | crio | |- ( iota_ z e. CC ( y x. z ) = x ) |
| 15 | 1 3 2 6 14 | cmpo | |- ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |
| 16 | 0 15 | wceq | |- / = ( x e. CC , y e. ( CC \ { 0 } ) |-> ( iota_ z e. CC ( y x. z ) = x ) ) |