Metamath Proof Explorer


Definition df-dju

Description: Disjoint union of two classes. This is a way of creating a set which contains elements corresponding to each element of A or B , tagging each one with whether it came from A or B . (Contributed by Jim Kingdon, 20-Jun-2022)

Ref Expression
Assertion df-dju
|- ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 cdju
 |-  ( A |_| B )
3 c0
 |-  (/)
4 3 csn
 |-  { (/) }
5 4 0 cxp
 |-  ( { (/) } X. A )
6 c1o
 |-  1o
7 6 csn
 |-  { 1o }
8 7 1 cxp
 |-  ( { 1o } X. B )
9 5 8 cun
 |-  ( ( { (/) } X. A ) u. ( { 1o } X. B ) )
10 2 9 wceq
 |-  ( A |_| B ) = ( ( { (/) } X. A ) u. ( { 1o } X. B ) )