| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cdlat | 
							 |-  DLat  | 
						
						
							| 1 | 
							
								
							 | 
							vk | 
							 |-  k  | 
						
						
							| 2 | 
							
								
							 | 
							clat | 
							 |-  Lat  | 
						
						
							| 3 | 
							
								
							 | 
							cbs | 
							 |-  Base  | 
						
						
							| 4 | 
							
								1
							 | 
							cv | 
							 |-  k  | 
						
						
							| 5 | 
							
								4 3
							 | 
							cfv | 
							 |-  ( Base ` k )  | 
						
						
							| 6 | 
							
								
							 | 
							vb | 
							 |-  b  | 
						
						
							| 7 | 
							
								
							 | 
							cjn | 
							 |-  join  | 
						
						
							| 8 | 
							
								4 7
							 | 
							cfv | 
							 |-  ( join ` k )  | 
						
						
							| 9 | 
							
								
							 | 
							vj | 
							 |-  j  | 
						
						
							| 10 | 
							
								
							 | 
							cmee | 
							 |-  meet  | 
						
						
							| 11 | 
							
								4 10
							 | 
							cfv | 
							 |-  ( meet ` k )  | 
						
						
							| 12 | 
							
								
							 | 
							vm | 
							 |-  m  | 
						
						
							| 13 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 14 | 
							
								6
							 | 
							cv | 
							 |-  b  | 
						
						
							| 15 | 
							
								
							 | 
							vy | 
							 |-  y  | 
						
						
							| 16 | 
							
								
							 | 
							vz | 
							 |-  z  | 
						
						
							| 17 | 
							
								13
							 | 
							cv | 
							 |-  x  | 
						
						
							| 18 | 
							
								12
							 | 
							cv | 
							 |-  m  | 
						
						
							| 19 | 
							
								15
							 | 
							cv | 
							 |-  y  | 
						
						
							| 20 | 
							
								9
							 | 
							cv | 
							 |-  j  | 
						
						
							| 21 | 
							
								16
							 | 
							cv | 
							 |-  z  | 
						
						
							| 22 | 
							
								19 21 20
							 | 
							co | 
							 |-  ( y j z )  | 
						
						
							| 23 | 
							
								17 22 18
							 | 
							co | 
							 |-  ( x m ( y j z ) )  | 
						
						
							| 24 | 
							
								17 19 18
							 | 
							co | 
							 |-  ( x m y )  | 
						
						
							| 25 | 
							
								17 21 18
							 | 
							co | 
							 |-  ( x m z )  | 
						
						
							| 26 | 
							
								24 25 20
							 | 
							co | 
							 |-  ( ( x m y ) j ( x m z ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							wceq | 
							 |-  ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 28 | 
							
								27 16 14
							 | 
							wral | 
							 |-  A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 29 | 
							
								28 15 14
							 | 
							wral | 
							 |-  A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 30 | 
							
								29 13 14
							 | 
							wral | 
							 |-  A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 31 | 
							
								30 12 11
							 | 
							wsbc | 
							 |-  [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 32 | 
							
								31 9 8
							 | 
							wsbc | 
							 |-  [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 33 | 
							
								32 6 5
							 | 
							wsbc | 
							 |-  [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) )  | 
						
						
							| 34 | 
							
								33 1 2
							 | 
							crab | 
							 |-  { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } | 
						
						
							| 35 | 
							
								0 34
							 | 
							wceq | 
							 |-  DLat = { k e. Lat | [. ( Base ` k ) / b ]. [. ( join ` k ) / j ]. [. ( meet ` k ) / m ]. A. x e. b A. y e. b A. z e. b ( x m ( y j z ) ) = ( ( x m y ) j ( x m z ) ) } |