Step |
Hyp |
Ref |
Expression |
0 |
|
cdmd |
|- MH* |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
1
|
cv |
|- x |
4 |
|
cch |
|- CH |
5 |
3 4
|
wcel |
|- x e. CH |
6 |
2
|
cv |
|- y |
7 |
6 4
|
wcel |
|- y e. CH |
8 |
5 7
|
wa |
|- ( x e. CH /\ y e. CH ) |
9 |
|
vz |
|- z |
10 |
9
|
cv |
|- z |
11 |
6 10
|
wss |
|- y C_ z |
12 |
10 3
|
cin |
|- ( z i^i x ) |
13 |
|
chj |
|- vH |
14 |
12 6 13
|
co |
|- ( ( z i^i x ) vH y ) |
15 |
3 6 13
|
co |
|- ( x vH y ) |
16 |
10 15
|
cin |
|- ( z i^i ( x vH y ) ) |
17 |
14 16
|
wceq |
|- ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) |
18 |
11 17
|
wi |
|- ( y C_ z -> ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) ) |
19 |
18 9 4
|
wral |
|- A. z e. CH ( y C_ z -> ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) ) |
20 |
8 19
|
wa |
|- ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( y C_ z -> ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) ) ) |
21 |
20 1 2
|
copab |
|- { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( y C_ z -> ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) ) ) } |
22 |
0 21
|
wceq |
|- MH* = { <. x , y >. | ( ( x e. CH /\ y e. CH ) /\ A. z e. CH ( y C_ z -> ( ( z i^i x ) vH y ) = ( z i^i ( x vH y ) ) ) ) } |