Metamath Proof Explorer


Definition df-dom

Description: Define the dominance relation. For an alternate definition see dfdom2 . Compare Definition of Enderton p. 145. Typical textbook definitions are derived as brdom and domen . (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion df-dom
|- ~<_ = { <. x , y >. | E. f f : x -1-1-> y }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdom
 |-  ~<_
1 vx
 |-  x
2 vy
 |-  y
3 vf
 |-  f
4 3 cv
 |-  f
5 1 cv
 |-  x
6 2 cv
 |-  y
7 5 6 4 wf1
 |-  f : x -1-1-> y
8 7 3 wex
 |-  E. f f : x -1-1-> y
9 8 1 2 copab
 |-  { <. x , y >. | E. f f : x -1-1-> y }
10 0 9 wceq
 |-  ~<_ = { <. x , y >. | E. f f : x -1-1-> y }