Metamath Proof Explorer


Definition df-dp2

Description: Define the "decimal fraction constructor", which is used to build up "decimal fractions" in base 10. This is intentionally similar to df-dec . (Contributed by David A. Wheeler, 15-May-2015) (Revised by AV, 9-Sep-2021)

Ref Expression
Assertion df-dp2
|- _ A B = ( A + ( B / ; 1 0 ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA
 |-  A
1 cB
 |-  B
2 0 1 cdp2
 |-  _ A B
3 caddc
 |-  +
4 cdiv
 |-  /
5 c1
 |-  1
6 cc0
 |-  0
7 5 6 cdc
 |-  ; 1 0
8 1 7 4 co
 |-  ( B / ; 1 0 )
9 0 8 3 co
 |-  ( A + ( B / ; 1 0 ) )
10 2 9 wceq
 |-  _ A B = ( A + ( B / ; 1 0 ) )