| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdpj |
|- dProj |
| 1 |
|
vg |
|- g |
| 2 |
|
cgrp |
|- Grp |
| 3 |
|
vs |
|- s |
| 4 |
|
cdprd |
|- DProd |
| 5 |
4
|
cdm |
|- dom DProd |
| 6 |
1
|
cv |
|- g |
| 7 |
6
|
csn |
|- { g } |
| 8 |
5 7
|
cima |
|- ( dom DProd " { g } ) |
| 9 |
|
vi |
|- i |
| 10 |
3
|
cv |
|- s |
| 11 |
10
|
cdm |
|- dom s |
| 12 |
9
|
cv |
|- i |
| 13 |
12 10
|
cfv |
|- ( s ` i ) |
| 14 |
|
cpj1 |
|- proj1 |
| 15 |
6 14
|
cfv |
|- ( proj1 ` g ) |
| 16 |
12
|
csn |
|- { i } |
| 17 |
11 16
|
cdif |
|- ( dom s \ { i } ) |
| 18 |
10 17
|
cres |
|- ( s |` ( dom s \ { i } ) ) |
| 19 |
6 18 4
|
co |
|- ( g DProd ( s |` ( dom s \ { i } ) ) ) |
| 20 |
13 19 15
|
co |
|- ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) |
| 21 |
9 11 20
|
cmpt |
|- ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) |
| 22 |
1 3 2 8 21
|
cmpo |
|- ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |
| 23 |
0 22
|
wceq |
|- dProj = ( g e. Grp , s e. ( dom DProd " { g } ) |-> ( i e. dom s |-> ( ( s ` i ) ( proj1 ` g ) ( g DProd ( s |` ( dom s \ { i } ) ) ) ) ) ) |