| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdprd |
|- DProd |
| 1 |
|
vg |
|- g |
| 2 |
|
cgrp |
|- Grp |
| 3 |
|
vs |
|- s |
| 4 |
|
vh |
|- h |
| 5 |
4
|
cv |
|- h |
| 6 |
5
|
cdm |
|- dom h |
| 7 |
|
csubg |
|- SubGrp |
| 8 |
1
|
cv |
|- g |
| 9 |
8 7
|
cfv |
|- ( SubGrp ` g ) |
| 10 |
6 9 5
|
wf |
|- h : dom h --> ( SubGrp ` g ) |
| 11 |
|
vx |
|- x |
| 12 |
|
vy |
|- y |
| 13 |
11
|
cv |
|- x |
| 14 |
13
|
csn |
|- { x } |
| 15 |
6 14
|
cdif |
|- ( dom h \ { x } ) |
| 16 |
13 5
|
cfv |
|- ( h ` x ) |
| 17 |
|
ccntz |
|- Cntz |
| 18 |
8 17
|
cfv |
|- ( Cntz ` g ) |
| 19 |
12
|
cv |
|- y |
| 20 |
19 5
|
cfv |
|- ( h ` y ) |
| 21 |
20 18
|
cfv |
|- ( ( Cntz ` g ) ` ( h ` y ) ) |
| 22 |
16 21
|
wss |
|- ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) |
| 23 |
22 12 15
|
wral |
|- A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) |
| 24 |
|
cmrc |
|- mrCls |
| 25 |
9 24
|
cfv |
|- ( mrCls ` ( SubGrp ` g ) ) |
| 26 |
5 15
|
cima |
|- ( h " ( dom h \ { x } ) ) |
| 27 |
26
|
cuni |
|- U. ( h " ( dom h \ { x } ) ) |
| 28 |
27 25
|
cfv |
|- ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) |
| 29 |
16 28
|
cin |
|- ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) |
| 30 |
|
c0g |
|- 0g |
| 31 |
8 30
|
cfv |
|- ( 0g ` g ) |
| 32 |
31
|
csn |
|- { ( 0g ` g ) } |
| 33 |
29 32
|
wceq |
|- ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } |
| 34 |
23 33
|
wa |
|- ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) |
| 35 |
34 11 6
|
wral |
|- A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) |
| 36 |
10 35
|
wa |
|- ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) |
| 37 |
36 4
|
cab |
|- { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |
| 38 |
|
vf |
|- f |
| 39 |
3
|
cv |
|- s |
| 40 |
39
|
cdm |
|- dom s |
| 41 |
13 39
|
cfv |
|- ( s ` x ) |
| 42 |
11 40 41
|
cixp |
|- X_ x e. dom s ( s ` x ) |
| 43 |
|
cfsupp |
|- finSupp |
| 44 |
5 31 43
|
wbr |
|- h finSupp ( 0g ` g ) |
| 45 |
44 4 42
|
crab |
|- { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |
| 46 |
|
cgsu |
|- gsum |
| 47 |
38
|
cv |
|- f |
| 48 |
8 47 46
|
co |
|- ( g gsum f ) |
| 49 |
38 45 48
|
cmpt |
|- ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) |
| 50 |
49
|
crn |
|- ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) |
| 51 |
1 3 2 37 50
|
cmpo |
|- ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |
| 52 |
0 51
|
wceq |
|- DProd = ( g e. Grp , s e. { h | ( h : dom h --> ( SubGrp ` g ) /\ A. x e. dom h ( A. y e. ( dom h \ { x } ) ( h ` x ) C_ ( ( Cntz ` g ) ` ( h ` y ) ) /\ ( ( h ` x ) i^i ( ( mrCls ` ( SubGrp ` g ) ) ` U. ( h " ( dom h \ { x } ) ) ) ) = { ( 0g ` g ) } ) ) } |-> ran ( f e. { h e. X_ x e. dom s ( s ` x ) | h finSupp ( 0g ` g ) } |-> ( g gsum f ) ) ) |