Step |
Hyp |
Ref |
Expression |
0 |
|
cdrng |
|- DivRingOps |
1 |
|
vg |
|- g |
2 |
|
vh |
|- h |
3 |
1
|
cv |
|- g |
4 |
2
|
cv |
|- h |
5 |
3 4
|
cop |
|- <. g , h >. |
6 |
|
crngo |
|- RingOps |
7 |
5 6
|
wcel |
|- <. g , h >. e. RingOps |
8 |
3
|
crn |
|- ran g |
9 |
|
cgi |
|- GId |
10 |
3 9
|
cfv |
|- ( GId ` g ) |
11 |
10
|
csn |
|- { ( GId ` g ) } |
12 |
8 11
|
cdif |
|- ( ran g \ { ( GId ` g ) } ) |
13 |
12 12
|
cxp |
|- ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) |
14 |
4 13
|
cres |
|- ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) |
15 |
|
cgr |
|- GrpOp |
16 |
14 15
|
wcel |
|- ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp |
17 |
7 16
|
wa |
|- ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) |
18 |
17 1 2
|
copab |
|- { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |
19 |
0 18
|
wceq |
|- DivRingOps = { <. g , h >. | ( <. g , h >. e. RingOps /\ ( h |` ( ( ran g \ { ( GId ` g ) } ) X. ( ran g \ { ( GId ` g ) } ) ) ) e. GrpOp ) } |