| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cdsmm |  |-  (+)m | 
						
							| 1 |  | vs |  |-  s | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vr |  |-  r | 
						
							| 4 | 1 | cv |  |-  s | 
						
							| 5 |  | cprds |  |-  Xs_ | 
						
							| 6 | 3 | cv |  |-  r | 
						
							| 7 | 4 6 5 | co |  |-  ( s Xs_ r ) | 
						
							| 8 |  | cress |  |-  |`s | 
						
							| 9 |  | vf |  |-  f | 
						
							| 10 |  | vx |  |-  x | 
						
							| 11 | 6 | cdm |  |-  dom r | 
						
							| 12 |  | cbs |  |-  Base | 
						
							| 13 | 10 | cv |  |-  x | 
						
							| 14 | 13 6 | cfv |  |-  ( r ` x ) | 
						
							| 15 | 14 12 | cfv |  |-  ( Base ` ( r ` x ) ) | 
						
							| 16 | 10 11 15 | cixp |  |-  X_ x e. dom r ( Base ` ( r ` x ) ) | 
						
							| 17 | 9 | cv |  |-  f | 
						
							| 18 | 13 17 | cfv |  |-  ( f ` x ) | 
						
							| 19 |  | c0g |  |-  0g | 
						
							| 20 | 14 19 | cfv |  |-  ( 0g ` ( r ` x ) ) | 
						
							| 21 | 18 20 | wne |  |-  ( f ` x ) =/= ( 0g ` ( r ` x ) ) | 
						
							| 22 | 21 10 11 | crab |  |-  { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } | 
						
							| 23 |  | cfn |  |-  Fin | 
						
							| 24 | 22 23 | wcel |  |-  { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin | 
						
							| 25 | 24 9 16 | crab |  |-  { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } | 
						
							| 26 | 7 25 8 | co |  |-  ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) | 
						
							| 27 | 1 3 2 2 26 | cmpo |  |-  ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) | 
						
							| 28 | 0 27 | wceq |  |-  (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |