Step |
Hyp |
Ref |
Expression |
0 |
|
cdsmm |
|- (+)m |
1 |
|
vs |
|- s |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
1
|
cv |
|- s |
5 |
|
cprds |
|- Xs_ |
6 |
3
|
cv |
|- r |
7 |
4 6 5
|
co |
|- ( s Xs_ r ) |
8 |
|
cress |
|- |`s |
9 |
|
vf |
|- f |
10 |
|
vx |
|- x |
11 |
6
|
cdm |
|- dom r |
12 |
|
cbs |
|- Base |
13 |
10
|
cv |
|- x |
14 |
13 6
|
cfv |
|- ( r ` x ) |
15 |
14 12
|
cfv |
|- ( Base ` ( r ` x ) ) |
16 |
10 11 15
|
cixp |
|- X_ x e. dom r ( Base ` ( r ` x ) ) |
17 |
9
|
cv |
|- f |
18 |
13 17
|
cfv |
|- ( f ` x ) |
19 |
|
c0g |
|- 0g |
20 |
14 19
|
cfv |
|- ( 0g ` ( r ` x ) ) |
21 |
18 20
|
wne |
|- ( f ` x ) =/= ( 0g ` ( r ` x ) ) |
22 |
21 10 11
|
crab |
|- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } |
23 |
|
cfn |
|- Fin |
24 |
22 23
|
wcel |
|- { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin |
25 |
24 9 16
|
crab |
|- { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } |
26 |
7 25 8
|
co |
|- ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) |
27 |
1 3 2 2 26
|
cmpo |
|- ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |
28 |
0 27
|
wceq |
|- (+)m = ( s e. _V , r e. _V |-> ( ( s Xs_ r ) |`s { f e. X_ x e. dom r ( Base ` ( r ` x ) ) | { x e. dom r | ( f ` x ) =/= ( 0g ` ( r ` x ) ) } e. Fin } ) ) |