Step |
Hyp |
Ref |
Expression |
0 |
|
cdv |
|- _D |
1 |
|
vs |
|- s |
2 |
|
cc |
|- CC |
3 |
2
|
cpw |
|- ~P CC |
4 |
|
vf |
|- f |
5 |
|
cpm |
|- ^pm |
6 |
1
|
cv |
|- s |
7 |
2 6 5
|
co |
|- ( CC ^pm s ) |
8 |
|
vx |
|- x |
9 |
|
cnt |
|- int |
10 |
|
ctopn |
|- TopOpen |
11 |
|
ccnfld |
|- CCfld |
12 |
11 10
|
cfv |
|- ( TopOpen ` CCfld ) |
13 |
|
crest |
|- |`t |
14 |
12 6 13
|
co |
|- ( ( TopOpen ` CCfld ) |`t s ) |
15 |
14 9
|
cfv |
|- ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) |
16 |
4
|
cv |
|- f |
17 |
16
|
cdm |
|- dom f |
18 |
17 15
|
cfv |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) |
19 |
8
|
cv |
|- x |
20 |
19
|
csn |
|- { x } |
21 |
|
vz |
|- z |
22 |
17 20
|
cdif |
|- ( dom f \ { x } ) |
23 |
21
|
cv |
|- z |
24 |
23 16
|
cfv |
|- ( f ` z ) |
25 |
|
cmin |
|- - |
26 |
19 16
|
cfv |
|- ( f ` x ) |
27 |
24 26 25
|
co |
|- ( ( f ` z ) - ( f ` x ) ) |
28 |
|
cdiv |
|- / |
29 |
23 19 25
|
co |
|- ( z - x ) |
30 |
27 29 28
|
co |
|- ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) |
31 |
21 22 30
|
cmpt |
|- ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) |
32 |
|
climc |
|- limCC |
33 |
31 19 32
|
co |
|- ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) |
34 |
20 33
|
cxp |
|- ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
35 |
8 18 34
|
ciun |
|- U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) |
36 |
1 4 3 7 35
|
cmpo |
|- ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |
37 |
0 36
|
wceq |
|- _D = ( s e. ~P CC , f e. ( CC ^pm s ) |-> U_ x e. ( ( int ` ( ( TopOpen ` CCfld ) |`t s ) ) ` dom f ) ( { x } X. ( ( z e. ( dom f \ { x } ) |-> ( ( ( f ` z ) - ( f ` x ) ) / ( z - x ) ) ) limCC x ) ) ) |