Description: Define the divides relation, see definition in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | df-dvds | |- || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cdvds | |- || |
|
1 | vx | |- x |
|
2 | vy | |- y |
|
3 | 1 | cv | |- x |
4 | cz | |- ZZ |
|
5 | 3 4 | wcel | |- x e. ZZ |
6 | 2 | cv | |- y |
7 | 6 4 | wcel | |- y e. ZZ |
8 | 5 7 | wa | |- ( x e. ZZ /\ y e. ZZ ) |
9 | vn | |- n |
|
10 | 9 | cv | |- n |
11 | cmul | |- x. |
|
12 | 10 3 11 | co | |- ( n x. x ) |
13 | 12 6 | wceq | |- ( n x. x ) = y |
14 | 13 9 4 | wrex | |- E. n e. ZZ ( n x. x ) = y |
15 | 8 14 | wa | |- ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) |
16 | 15 1 2 | copab | |- { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } |
17 | 0 16 | wceq | |- || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) } |