Metamath Proof Explorer


Definition df-dvds

Description: Define the divides relation, see definition in ApostolNT p. 14. (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion df-dvds
|- || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvds
 |-  ||
1 vx
 |-  x
2 vy
 |-  y
3 1 cv
 |-  x
4 cz
 |-  ZZ
5 3 4 wcel
 |-  x e. ZZ
6 2 cv
 |-  y
7 6 4 wcel
 |-  y e. ZZ
8 5 7 wa
 |-  ( x e. ZZ /\ y e. ZZ )
9 vn
 |-  n
10 9 cv
 |-  n
11 cmul
 |-  x.
12 10 3 11 co
 |-  ( n x. x )
13 12 6 wceq
 |-  ( n x. x ) = y
14 13 9 4 wrex
 |-  E. n e. ZZ ( n x. x ) = y
15 8 14 wa
 |-  ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y )
16 15 1 2 copab
 |-  { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) }
17 0 16 wceq
 |-  || = { <. x , y >. | ( ( x e. ZZ /\ y e. ZZ ) /\ E. n e. ZZ ( n x. x ) = y ) }