| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cdsr |
|- ||r |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
vy |
|- y |
| 5 |
3
|
cv |
|- x |
| 6 |
|
cbs |
|- Base |
| 7 |
1
|
cv |
|- w |
| 8 |
7 6
|
cfv |
|- ( Base ` w ) |
| 9 |
5 8
|
wcel |
|- x e. ( Base ` w ) |
| 10 |
|
vz |
|- z |
| 11 |
10
|
cv |
|- z |
| 12 |
|
cmulr |
|- .r |
| 13 |
7 12
|
cfv |
|- ( .r ` w ) |
| 14 |
11 5 13
|
co |
|- ( z ( .r ` w ) x ) |
| 15 |
4
|
cv |
|- y |
| 16 |
14 15
|
wceq |
|- ( z ( .r ` w ) x ) = y |
| 17 |
16 10 8
|
wrex |
|- E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y |
| 18 |
9 17
|
wa |
|- ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) |
| 19 |
18 3 4
|
copab |
|- { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } |
| 20 |
1 2 19
|
cmpt |
|- ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |
| 21 |
0 20
|
wceq |
|- ||r = ( w e. _V |-> { <. x , y >. | ( x e. ( Base ` w ) /\ E. z e. ( Base ` w ) ( z ( .r ` w ) x ) = y ) } ) |