Metamath Proof Explorer


Definition df-dvn

Description: Define the n -th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-dvn
|- Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvn
 |-  Dn
1 vs
 |-  s
2 cc
 |-  CC
3 2 cpw
 |-  ~P CC
4 vf
 |-  f
5 cpm
 |-  ^pm
6 1 cv
 |-  s
7 2 6 5 co
 |-  ( CC ^pm s )
8 cc0
 |-  0
9 vx
 |-  x
10 cvv
 |-  _V
11 cdv
 |-  _D
12 9 cv
 |-  x
13 6 12 11 co
 |-  ( s _D x )
14 9 10 13 cmpt
 |-  ( x e. _V |-> ( s _D x ) )
15 c1st
 |-  1st
16 14 15 ccom
 |-  ( ( x e. _V |-> ( s _D x ) ) o. 1st )
17 cn0
 |-  NN0
18 4 cv
 |-  f
19 18 csn
 |-  { f }
20 17 19 cxp
 |-  ( NN0 X. { f } )
21 16 20 8 cseq
 |-  seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) )
22 1 4 3 7 21 cmpo
 |-  ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) )
23 0 22 wceq
 |-  Dn = ( s e. ~P CC , f e. ( CC ^pm s ) |-> seq 0 ( ( ( x e. _V |-> ( s _D x ) ) o. 1st ) , ( NN0 X. { f } ) ) )