Metamath Proof Explorer


Definition df-dvr

Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Assertion df-dvr
|- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvr
 |-  /r
1 vr
 |-  r
2 cvv
 |-  _V
3 vx
 |-  x
4 cbs
 |-  Base
5 1 cv
 |-  r
6 5 4 cfv
 |-  ( Base ` r )
7 vy
 |-  y
8 cui
 |-  Unit
9 5 8 cfv
 |-  ( Unit ` r )
10 3 cv
 |-  x
11 cmulr
 |-  .r
12 5 11 cfv
 |-  ( .r ` r )
13 cinvr
 |-  invr
14 5 13 cfv
 |-  ( invr ` r )
15 7 cv
 |-  y
16 15 14 cfv
 |-  ( ( invr ` r ) ` y )
17 10 16 12 co
 |-  ( x ( .r ` r ) ( ( invr ` r ) ` y ) )
18 3 7 6 9 17 cmpo
 |-  ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) )
19 1 2 18 cmpt
 |-  ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) )
20 0 19 wceq
 |-  /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) )