Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-dvr | |- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cdvr | |- /r |
|
1 | vr | |- r |
|
2 | cvv | |- _V |
|
3 | vx | |- x |
|
4 | cbs | |- Base |
|
5 | 1 | cv | |- r |
6 | 5 4 | cfv | |- ( Base ` r ) |
7 | vy | |- y |
|
8 | cui | |- Unit |
|
9 | 5 8 | cfv | |- ( Unit ` r ) |
10 | 3 | cv | |- x |
11 | cmulr | |- .r |
|
12 | 5 11 | cfv | |- ( .r ` r ) |
13 | cinvr | |- invr |
|
14 | 5 13 | cfv | |- ( invr ` r ) |
15 | 7 | cv | |- y |
16 | 15 14 | cfv | |- ( ( invr ` r ) ` y ) |
17 | 10 16 12 | co | |- ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) |
18 | 3 7 6 9 17 | cmpo | |- ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) |
19 | 1 2 18 | cmpt | |- ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |
20 | 0 19 | wceq | |- /r = ( r e. _V |-> ( x e. ( Base ` r ) , y e. ( Unit ` r ) |-> ( x ( .r ` r ) ( ( invr ` r ) ` y ) ) ) ) |