Step |
Hyp |
Ref |
Expression |
0 |
|
cedom |
|- EDomn |
1 |
|
vd |
|- d |
2 |
|
cidom |
|- IDomn |
3 |
|
ceuf |
|- EuclF |
4 |
1
|
cv |
|- d |
5 |
4 3
|
cfv |
|- ( EuclF ` d ) |
6 |
|
ve |
|- e |
7 |
|
cbs |
|- Base |
8 |
4 7
|
cfv |
|- ( Base ` d ) |
9 |
|
vv |
|- v |
10 |
6
|
cv |
|- e |
11 |
10
|
wfun |
|- Fun e |
12 |
9
|
cv |
|- v |
13 |
|
c0g |
|- 0g |
14 |
4 13
|
cfv |
|- ( 0g ` d ) |
15 |
14
|
csn |
|- { ( 0g ` d ) } |
16 |
12 15
|
cdif |
|- ( v \ { ( 0g ` d ) } ) |
17 |
10 16
|
cima |
|- ( e " ( v \ { ( 0g ` d ) } ) ) |
18 |
|
cc0 |
|- 0 |
19 |
|
cico |
|- [,) |
20 |
|
cpnf |
|- +oo |
21 |
18 20 19
|
co |
|- ( 0 [,) +oo ) |
22 |
17 21
|
wss |
|- ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) |
23 |
|
va |
|- a |
24 |
|
vb |
|- b |
25 |
|
vq |
|- q |
26 |
|
vr |
|- r |
27 |
23
|
cv |
|- a |
28 |
24
|
cv |
|- b |
29 |
|
cmulr |
|- .r |
30 |
4 29
|
cfv |
|- ( .r ` d ) |
31 |
25
|
cv |
|- q |
32 |
28 31 30
|
co |
|- ( b ( .r ` d ) q ) |
33 |
|
cplusg |
|- +g |
34 |
4 33
|
cfv |
|- ( +g ` d ) |
35 |
26
|
cv |
|- r |
36 |
32 35 34
|
co |
|- ( ( b ( .r ` d ) q ) ( +g ` d ) r ) |
37 |
27 36
|
wceq |
|- a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) |
38 |
35 14
|
wceq |
|- r = ( 0g ` d ) |
39 |
35 10
|
cfv |
|- ( e ` r ) |
40 |
|
clt |
|- < |
41 |
28 10
|
cfv |
|- ( e ` b ) |
42 |
39 41 40
|
wbr |
|- ( e ` r ) < ( e ` b ) |
43 |
38 42
|
wo |
|- ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) |
44 |
37 43
|
wa |
|- ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
45 |
44 26 12
|
wrex |
|- E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
46 |
45 25 12
|
wrex |
|- E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
47 |
46 24 16
|
wral |
|- A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
48 |
47 23 12
|
wral |
|- A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) |
49 |
11 22 48
|
w3a |
|- ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
50 |
49 9 8
|
wsbc |
|- [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
51 |
50 6 5
|
wsbc |
|- [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) |
52 |
51 1 2
|
crab |
|- { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } |
53 |
0 52
|
wceq |
|- EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } |