Metamath Proof Explorer


Definition df-ef

Description: Define the exponential function. Its value at the complex number A is ( expA ) and is called the "exponential of A "; see efval . (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-ef
|- exp = ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce
 |-  exp
1 vx
 |-  x
2 cc
 |-  CC
3 vk
 |-  k
4 cn0
 |-  NN0
5 1 cv
 |-  x
6 cexp
 |-  ^
7 3 cv
 |-  k
8 5 7 6 co
 |-  ( x ^ k )
9 cdiv
 |-  /
10 cfa
 |-  !
11 7 10 cfv
 |-  ( ! ` k )
12 8 11 9 co
 |-  ( ( x ^ k ) / ( ! ` k ) )
13 4 12 3 csu
 |-  sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) )
14 1 2 13 cmpt
 |-  ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) )
15 0 14 wceq
 |-  exp = ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) )