Metamath Proof Explorer


Definition df-ehl

Description: Define a function generating the real Euclidean spaces of finite dimension. The case n = 0 corresponds to a space of dimension 0, that is, limited to a neutral element (see ehl0 ). Members of this family of spaces are Hilbert spaces, as shown in - ehlhl . (Contributed by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Assertion df-ehl
|- EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cehl
 |-  EEhil
1 vn
 |-  n
2 cn0
 |-  NN0
3 crrx
 |-  RR^
4 c1
 |-  1
5 cfz
 |-  ...
6 1 cv
 |-  n
7 4 6 5 co
 |-  ( 1 ... n )
8 7 3 cfv
 |-  ( RR^ ` ( 1 ... n ) )
9 1 2 8 cmpt
 |-  ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) )
10 0 9 wceq
 |-  EEhil = ( n e. NN0 |-> ( RR^ ` ( 1 ... n ) ) )