Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Operators on Hilbert spaces
Linear, continuous, bounded, Hermitian, unitary operators and norms
df-eigval
Metamath Proof Explorer
Description: Define the eigenvalue function. The range of eigval T is the set
of eigenvalues of Hilbert space operator T . Theorem eigvalcl shows that ( eigval T ) A , the eigenvalue associated with
eigenvector A , is a complex number. (Contributed by NM , 11-Mar-2006) (New usage is discouraged.)
Ref
Expression
Assertion
df-eigval
|- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cel
|- eigval
1
vt
|- t
2
chba
|- ~H
3
cmap
|- ^m
4
2 2 3
co
|- ( ~H ^m ~H )
5
vx
|- x
6
cei
|- eigvec
7
1
cv
|- t
8
7 6
cfv
|- ( eigvec ` t )
9
5
cv
|- x
10
9 7
cfv
|- ( t ` x )
11
csp
|- .ih
12
10 9 11
co
|- ( ( t ` x ) .ih x )
13
cdiv
|- /
14
cno
|- normh
15
9 14
cfv
|- ( normh ` x )
16
cexp
|- ^
17
c2
|- 2
18
15 17 16
co
|- ( ( normh ` x ) ^ 2 )
19
12 18 13
co
|- ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) )
20
5 8 19
cmpt
|- ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) )
21
1 4 20
cmpt
|- ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )
22
0 21
wceq
|- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )