Metamath Proof Explorer


Definition df-eigval

Description: Define the eigenvalue function. The range of eigvalT is the set of eigenvalues of Hilbert space operator T . Theorem eigvalcl shows that ( eigvalT )A , the eigenvalue associated with eigenvector A , is a complex number. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion df-eigval
|- eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cel
 |-  eigval
1 vt
 |-  t
2 chba
 |-  ~H
3 cmap
 |-  ^m
4 2 2 3 co
 |-  ( ~H ^m ~H )
5 vx
 |-  x
6 cei
 |-  eigvec
7 1 cv
 |-  t
8 7 6 cfv
 |-  ( eigvec ` t )
9 5 cv
 |-  x
10 9 7 cfv
 |-  ( t ` x )
11 csp
 |-  .ih
12 10 9 11 co
 |-  ( ( t ` x ) .ih x )
13 cdiv
 |-  /
14 cno
 |-  normh
15 9 14 cfv
 |-  ( normh ` x )
16 cexp
 |-  ^
17 c2
 |-  2
18 15 17 16 co
 |-  ( ( normh ` x ) ^ 2 )
19 12 18 13 co
 |-  ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) )
20 5 8 19 cmpt
 |-  ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) )
21 1 4 20 cmpt
 |-  ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )
22 0 21 wceq
 |-  eigval = ( t e. ( ~H ^m ~H ) |-> ( x e. ( eigvec ` t ) |-> ( ( ( t ` x ) .ih x ) / ( ( normh ` x ) ^ 2 ) ) ) )