Metamath Proof Explorer


Definition df-eigvec

Description: Define the eigenvector function. Theorem eleigveccl shows that eigvecT , the set of eigenvectors of Hilbert space operator T , are Hilbert space vectors. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)

Ref Expression
Assertion df-eigvec
|- eigvec = ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cei
 |-  eigvec
1 vt
 |-  t
2 chba
 |-  ~H
3 cmap
 |-  ^m
4 2 2 3 co
 |-  ( ~H ^m ~H )
5 vx
 |-  x
6 c0h
 |-  0H
7 2 6 cdif
 |-  ( ~H \ 0H )
8 vz
 |-  z
9 cc
 |-  CC
10 1 cv
 |-  t
11 5 cv
 |-  x
12 11 10 cfv
 |-  ( t ` x )
13 8 cv
 |-  z
14 csm
 |-  .h
15 13 11 14 co
 |-  ( z .h x )
16 12 15 wceq
 |-  ( t ` x ) = ( z .h x )
17 16 8 9 wrex
 |-  E. z e. CC ( t ` x ) = ( z .h x )
18 17 5 7 crab
 |-  { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) }
19 1 4 18 cmpt
 |-  ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } )
20 0 19 wceq
 |-  eigvec = ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } )