Description: Define the eigenvector function. Theorem eleigveccl shows that eigvecT , the set of eigenvectors of Hilbert space operator T , are Hilbert space vectors. (Contributed by NM, 11-Mar-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-eigvec | |- eigvec = ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cei | |- eigvec |
|
1 | vt | |- t |
|
2 | chba | |- ~H |
|
3 | cmap | |- ^m |
|
4 | 2 2 3 | co | |- ( ~H ^m ~H ) |
5 | vx | |- x |
|
6 | c0h | |- 0H |
|
7 | 2 6 | cdif | |- ( ~H \ 0H ) |
8 | vz | |- z |
|
9 | cc | |- CC |
|
10 | 1 | cv | |- t |
11 | 5 | cv | |- x |
12 | 11 10 | cfv | |- ( t ` x ) |
13 | 8 | cv | |- z |
14 | csm | |- .h |
|
15 | 13 11 14 | co | |- ( z .h x ) |
16 | 12 15 | wceq | |- ( t ` x ) = ( z .h x ) |
17 | 16 8 9 | wrex | |- E. z e. CC ( t ` x ) = ( z .h x ) |
18 | 17 5 7 | crab | |- { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } |
19 | 1 4 18 | cmpt | |- ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } ) |
20 | 0 19 | wceq | |- eigvec = ( t e. ( ~H ^m ~H ) |-> { x e. ( ~H \ 0H ) | E. z e. CC ( t ` x ) = ( z .h x ) } ) |