Metamath Proof Explorer


Definition df-en

Description: Define the equinumerosity relation. Definition of Enderton p. 129. We define ~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren . (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion df-en
|- ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cen
 |-  ~~
1 vx
 |-  x
2 vy
 |-  y
3 vf
 |-  f
4 3 cv
 |-  f
5 1 cv
 |-  x
6 2 cv
 |-  y
7 5 6 4 wf1o
 |-  f : x -1-1-onto-> y
8 7 3 wex
 |-  E. f f : x -1-1-onto-> y
9 8 1 2 copab
 |-  { <. x , y >. | E. f f : x -1-1-onto-> y }
10 0 9 wceq
 |-  ~~ = { <. x , y >. | E. f f : x -1-1-onto-> y }