| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cqg |
|- ~QG |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vi |
|- i |
| 4 |
|
vx |
|- x |
| 5 |
|
vy |
|- y |
| 6 |
4
|
cv |
|- x |
| 7 |
5
|
cv |
|- y |
| 8 |
6 7
|
cpr |
|- { x , y } |
| 9 |
|
cbs |
|- Base |
| 10 |
1
|
cv |
|- r |
| 11 |
10 9
|
cfv |
|- ( Base ` r ) |
| 12 |
8 11
|
wss |
|- { x , y } C_ ( Base ` r ) |
| 13 |
|
cminusg |
|- invg |
| 14 |
10 13
|
cfv |
|- ( invg ` r ) |
| 15 |
6 14
|
cfv |
|- ( ( invg ` r ) ` x ) |
| 16 |
|
cplusg |
|- +g |
| 17 |
10 16
|
cfv |
|- ( +g ` r ) |
| 18 |
15 7 17
|
co |
|- ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) |
| 19 |
3
|
cv |
|- i |
| 20 |
18 19
|
wcel |
|- ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) e. i |
| 21 |
12 20
|
wa |
|- ( { x , y } C_ ( Base ` r ) /\ ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) e. i ) |
| 22 |
21 4 5
|
copab |
|- { <. x , y >. | ( { x , y } C_ ( Base ` r ) /\ ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) e. i ) } |
| 23 |
1 3 2 2 22
|
cmpo |
|- ( r e. _V , i e. _V |-> { <. x , y >. | ( { x , y } C_ ( Base ` r ) /\ ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) e. i ) } ) |
| 24 |
0 23
|
wceq |
|- ~QG = ( r e. _V , i e. _V |-> { <. x , y >. | ( { x , y } C_ ( Base ` r ) /\ ( ( ( invg ` r ) ` x ) ( +g ` r ) y ) e. i ) } ) |