Description: Define a convenience function that "reduces" a fraction to lowest terms. Note that in this form, it is not obviously a function; we prove this in nqerf . (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-erq | |- /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cerq | |- /Q |
|
| 1 | ceq | |- ~Q |
|
| 2 | cnpi | |- N. |
|
| 3 | 2 2 | cxp | |- ( N. X. N. ) |
| 4 | cnq | |- Q. |
|
| 5 | 3 4 | cxp | |- ( ( N. X. N. ) X. Q. ) |
| 6 | 1 5 | cin | |- ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) |
| 7 | 0 6 | wceq | |- /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) ) |