Metamath Proof Explorer


Definition df-erq

Description: Define a convenience function that "reduces" a fraction to lowest terms. Note that in this form, it is not obviously a function; we prove this in nqerf . (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion df-erq
|- /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cerq
 |-  /Q
1 ceq
 |-  ~Q
2 cnpi
 |-  N.
3 2 2 cxp
 |-  ( N. X. N. )
4 cnq
 |-  Q.
5 3 4 cxp
 |-  ( ( N. X. N. ) X. Q. )
6 1 5 cin
 |-  ( ~Q i^i ( ( N. X. N. ) X. Q. ) )
7 0 6 wceq
 |-  /Q = ( ~Q i^i ( ( N. X. N. ) X. Q. ) )