Step |
Hyp |
Ref |
Expression |
0 |
|
ceupth |
|- EulerPaths |
1 |
|
vg |
|- g |
2 |
|
cvv |
|- _V |
3 |
|
vf |
|- f |
4 |
|
vp |
|- p |
5 |
3
|
cv |
|- f |
6 |
|
ctrls |
|- Trails |
7 |
1
|
cv |
|- g |
8 |
7 6
|
cfv |
|- ( Trails ` g ) |
9 |
4
|
cv |
|- p |
10 |
5 9 8
|
wbr |
|- f ( Trails ` g ) p |
11 |
|
cc0 |
|- 0 |
12 |
|
cfzo |
|- ..^ |
13 |
|
chash |
|- # |
14 |
5 13
|
cfv |
|- ( # ` f ) |
15 |
11 14 12
|
co |
|- ( 0 ..^ ( # ` f ) ) |
16 |
|
ciedg |
|- iEdg |
17 |
7 16
|
cfv |
|- ( iEdg ` g ) |
18 |
17
|
cdm |
|- dom ( iEdg ` g ) |
19 |
15 18 5
|
wfo |
|- f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) |
20 |
10 19
|
wa |
|- ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) |
21 |
20 3 4
|
copab |
|- { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } |
22 |
1 2 21
|
cmpt |
|- ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |
23 |
0 22
|
wceq |
|- EulerPaths = ( g e. _V |-> { <. f , p >. | ( f ( Trails ` g ) p /\ f : ( 0 ..^ ( # ` f ) ) -onto-> dom ( iEdg ` g ) ) } ) |