Metamath Proof Explorer


Definition df-even

Description: Define the set of even numbers. (Contributed by AV, 14-Jun-2020)

Ref Expression
Assertion df-even
|- Even = { z e. ZZ | ( z / 2 ) e. ZZ }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ceven
 |-  Even
1 vz
 |-  z
2 cz
 |-  ZZ
3 1 cv
 |-  z
4 cdiv
 |-  /
5 c2
 |-  2
6 3 5 4 co
 |-  ( z / 2 )
7 6 2 wcel
 |-  ( z / 2 ) e. ZZ
8 7 1 2 crab
 |-  { z e. ZZ | ( z / 2 ) e. ZZ }
9 0 8 wceq
 |-  Even = { z e. ZZ | ( z / 2 ) e. ZZ }